Effects of Consciousness and Consistency in Manual Control of Visual Stimulus on Reduction of the Flash-Lag Effect for Luminance Change
نویسندگان
چکیده
Four experiments investigated how observers' consciousness about their control of stimulus change affects the visual perception associated with the illusory flash-lag effect. In previous study (Ichikawa and Masakura, 2006), we found that the flash-lag effect in motion is reduced if observers were conscious that they were controlling stimulus movements by the use of computer mouse, even if the stimulus moved automatically, independently of observer's mouse control. In the other study (Ichikawa and Masakura, 2010a), we found that the consistent directional relationship between the observer's mouse control and stimulus movement, which is learned in our everyday computer use, is important for the reduction of the flash-lag effect in active observation. In the present study, we examined whether the reduction of the flash-lag effect in active observation requires the observers' consciousness about their control of stimulus change, and consistency in coupling mouse movement direction and stimulus change across trials in experiments. We used the flash-lag effect in luminance change because there is no intrinsic relationship between observer's mouse control and luminance change in our everyday computer use. We compared the illusory flash-lag effects for automatic change of the luminance with luminance change that was controlled by the observers' active manipulation of a computer mouse. Because the flash occurs randomly in time, observers could not anticipate when the flash was presented. Results suggest that the not only observer's consciousness of controlling the stimulus, but also consistency in coupling mouse movement direction with stimulus change, are required for the reduction of the flash-lag effect in active observation. The basis of the reduction of the flash-lag effect in active observation is discussed.
منابع مشابه
Manual control of the visual stimulus reduces the flash-lag effect
We investigated how observers' control of the stimulus change affects temporal aspects of visual perception. We compared the flash-lag effects for motion (Experiment 1) and for luminance (Experiment 2) under several conditions that differed in the degree of the observers' control of change in a stimulus. The flash-lag effect was salient if the observers passively viewed the automatic change in ...
متن کاملManual control of the visual stimulus reduces the Xash-lag eVect
We investigated how observers’ control of the stimulus change aVects temporal aspects of visual perception. We compared the Xashlag eVects for motion (Experiment 1) and for luminance (Experiment 2) under several conditions that diVered in the degree of the observers’ control of change in a stimulus. The Xash-lag eVect was salient if the observers passively viewed the automatic change in the sti...
متن کاملThe Magnocellular visual pathway and the flash-lag illusion.
Determining how the visual system locates moving stimuli continues to be an experimental and theoretical challenge. By making a moving visual stimulus equiluminant with its background, and immersing it in luminance noise, the spatial lead it normal enjoys over a flashed stimulus (the flash-lag illusion) was completely eliminated (the illusion was actually reversed for 6 out of 11 participants)....
متن کاملA Glance at Psychophysics Software Programs
Visual stimulation with precise control of stimulus has transformed the field of psychophysics since the introduction of personal computers. Luminance and chromatic features of stimulus, timing, and position of the stimulus are the main features that could be defined using programs written specifically for psychophysical experiments. In this manuscript, software used for the psychophysical expe...
متن کاملCyclopean flash-lag illusion
Possible physiological mechanisms to explain the flash-lag effect, in which subjects perceive a flashed item that is co-localized with a moving item as trailing behind the moving item, have been found within the retina of lower species, and in the motor pathways of humans. Here, we demonstrate flash-lag employing "second-order" moving and flashed stimuli, defined solely by their binocular-dispa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013